728x90
반응형

함수 3

【미분적분학 1】 Chapter 6. 함수의 연속성

만약,  이면, 함수 f는 x=a에서 연속(continuous)한다. 함수의 연속은 '세 가지 조건'을 포함한다.   "함수 f는 임의의 점 x=a에서 연속이다."라는 명제의 필요충분조건은 위와 같은데, 즉 x=a에서 f의 극한은 존재하며 그 값은 f(a)가 된다. 자연의 많은 현상은 연속적이며, 연속함수로 해석할 수 있다. 예를 들어 물체의 움직임이나 개체 수의 변화는 시간에 따라 연속적으로 변한다.연속적인 점에서 함수 값은 극한 값과 일치한다.  EXAMPLE. 함수의 불연속성   [그림 1] 함수의 그래프를 보고, a, b, 그리고 c 지점의 연속성에 대해 설명하시오. SOLUTION.[1] x=a에서 f(a)가 정의되지 않는다. ⇒ 불연속​[2] x=b에서 f(a)는 색칠된 점으로 정의된다. 그러..

【미분적분학 1】 Chapter 2. 함수의 변화율

​앞선 챕터에서 우리는 미분적분학에서 핵심적으로 다루는 (1)함수와 (2)접선의 의미를 아래와 같이 공부하였다.함수: 집합 X의 각 원소 x를 집합 Y에 있는 오직 한 원소 f(x)에 대응시키는 일련의 규칙, 원소 x는 독립변수, 함수값 또는 상 f(x)는 종속변수이다.접선: 어떠한 그래프 상에 '한 지점에 접하는 직선', 할선의 기울기의 극한으로 값을 구한다. 미분에 대한 접근Approach to Differentiation  ​[그림 1]을 통해 주어진 함수는 다음과 같이 변화함을 알 수 있다.0~5초: 변화율 없음5~7초: 우상향 변화, y의 변화율은 양의 값을 가짐7~8초: 우상향 변화, 5~7초보다 더욱 급변함8~9초: 우하향 변화, y의 변화율은 음의 값을 가짐9~12초: 우하향 변화, 8~9..

【미분적분학 1】 Chapter 1. 함수와 접선

​미분적분학(calculus): 미적분학, 함수로 표현할 수 있는 어떠한 물리량의 '변화'를 분석하는 데 사용되는 수학기법함수(function): 어떠한 집합 X, Y에 대한 함수 f란, 아래를 만족하는 대응관계로 정의한다. [그림 1]임의의 원소(element) x에 대해 그에 대응하는 원소 y가 유일하게 존재한다. 이때 원소 x는 집합 X에 속하고, 원소 y는 집합 Y에 속한다.집합 X는 정의역(domain), 집합 Y는 공역(codomain)이다.원소 x에 대응되는 원소를 x의 함수값(value of a function) 또는 상(image)이라 한다. 함수값은 f(x)로 표기한다.치역(range): 모든 함수값을 모은 집합으로 f(X)로 표기한다.   즉, 함수 f란, 집합 X의 각 원소 x를 집..

728x90
반응형