728x90
반응형

미분적분학/적분 10

【미분적분학 2】 Chapter 10. 부분분수분해

​부분분수 적분은 피적분함수가 유리함수(분자와 분모가 다항식으로 이루어진 함수)꼴인 함수를 쉽게 적분하는 전략이다. 식 19.1 식 19.1의 피적분함수는 유리함수이고, 이 유리함수는 인수분해를 통해 간단한 분수의 합(식 19.2)으로 나타낼 수 있다. 식 19.2 식 19.2를 연산하면 식 19.1의 피적분함수를 다시 구할 수 있고, 이 과정의 역(역과정)이 즉 부분분수분해(Partial Fraction Decomposition)이다.  분수의 구분유리함수는 일반적으로 다음과 같이 표현한다.  여기서 P와 Q는 다항식으로 P의 차수(degree)가 Q의 차수보다 작을 때, f는 더 간단한 분수의 합으로 표현된다.- 진유리함수(proper rational fraction): P(x)의 차수가 Q(x)의 ..

【미분적분학 2】 Chapter 9. 삼각치환적분

​변수를 직접 적분하기 어려운 경우, 삼각함수의 성질을 활용하여 변수를 삼각함수로 치환하여 적분(삼각치환적분, integration by trigonometric substitution, ITS)할 수 있다. 예를 들어 원이나 타원의 넓이를 구하기 위해선 ∫(√a^2-x^2)dx (단, a>0이다.)와 같은 형태의 적분을 풀어야 한다. 상술한 적분은 ∫x(√a^2-x^2)dx와는 달리 치환이 어려운 적분으로, 만약 x=a sinθ로 치환하여 변수를 θ로 둔다면, 1-sin^2θ=cos^2θ를 써 근호를 제거할 수 있다.  일반적인 치환법칙과 구분하여, x=a sinθ는 다음과 같은 차이점을 갖는다. 1. 역치환(inverse substitution)  2. 역치환한 함수가 일대일이면 역치환이 가능하므로,..

【미분적분학 2】 Chapter 8. 삼각함수적분

적분의 대표적인 전략으로 지금까지 IBS(치환적분법)과 IBP(부분적분법)를 알아보았다. 하지만 이 전략들 이외에도 피적분함수의 형태에 따라 몇 가지 적분법이 더 있다. 1. 삼각함수적분(Integrals of Trigonometric Functions, ITF)2. 부분분수적분(Integration by Partial Fraction Decomposition, IPFD)3. 삼각치환적분(Integration by Trigonometric Substitution, ITS) 삼각함수 적분을 위해서는 삼각함수 항등식을 반드시 복습해야 한다.​ 삼각함수 적분은 피적분함수의 삼각함수 형태에 따라 다음과 같이 정리할 수 있다.  삼각함수의 반각공식은 삼각함수의 배각공식으로부터 유도할 수 있고, 두 식은 다음과 같..

【미분적분학 2】 Chapter 7. 부분적분

​미분법의 곱법칙(product rule)에 대응되는 부분적분법(integration by parts, IBP)을 알아보자. ※ The IBP [1] Suppose that u(x) and v(x) are differentiable functions.[2] The product rule in terms of differentials gives us: d(uv)=udv+vdu [3] Rearranging the rule, we can write: udv=d(uv)-vdu [4] Integrating both sides with respect to x: ∫udv=uv-∫vdu (integration by parts formula)  부정적분 부분적분  ■  IBP에서 핵심적인 사항은 u와 dv를 적절하게 선..

【미분적분학 2】 Chapter 6. 치환적분

​ 적분법에 들어가기에 앞서 먼저 미적분학의 미분법에 대해 간단히 복습하자.  미분법과 마찬가지로 적분에서도 합성함수를 적분하는 여러 가지 전략이 있다.   곱법칙(몫법칙을 포함해), 그리고 연쇄법칙과 대응되는(corresponds to) 적분법들도 존재하는데 대응관계는 다음과 같다. 1. 부분적분(integration by parts): 곱법칙에 대응한다.2. 치환적분(integration by substitution): 연쇄법칙에 대응한다.치환적분치환적분은 연쇄법칙과 유사한 방법의 적분법으로 연쇄법칙에서의 내부함수의 치환 요령을 따른다. [1] 내부함수를 u로 치환한다.[2] du/dx=g'(x)를 구한다.[3] 적분식에서 dx를 다음과 같이 바꿔 쓸 수 있다. ⇒ dx=du/g'(x)[4] u를 포..

【미분적분학 2】 Chapter 5. 부정적분

​미적분학의 기본정리 2에서 F는 f에 대한 임의의 원시함수였고, F는 다시 ∫f(x)dx로 표현할 수 있다.원시함수는 부정적분(indefinite integral)이라 불리며, 함수족(family)이다. ⇒ 즉, 부정적분은 하나의 함수족이다.​ F(x)=x^3/3은 f(x)=x^2의 역도함수, 즉 부정적분이며 여러 개의 부정적분을 갖는다.c는 부정적분의 상수(constant of integral)이다.부정적분의 상수는 임의의 값을 갖는다.​자주 사용되는 함수-부정적분 공식함수의 미분공식처럼 앞으로 적분을 풀기 위해서는 부정적분표가 필요하다.    부정적분의 여러 공식은 우변의 함수를 미분하여 피적분함수를 구하는 것으로 증명할 수 있다.  ※ List of Integrals There are nine l..

【미분적분학 2】 Chapter 4. 미적분학의 기본정리

​   뉴턴의 스승 배로(Isaac Barrow, 1630~1677, 잉글랜드)는 미분 문제와 적분 문제가 서로 밀접함을 발견했다.배로는 접선 문제와 넓이 문제의 풀이가 서로 역과정임을 확인했다. ⇒ 미적분학의 기본정리 이전에 적분은 합의 극한으로서 계산되었다. 함수 f가 구간 [a, b]에서 적분가능하고 Δx=b-a/n, x_i=a+iΔx일 때, 정적분은 다음과 같이 정의한다.  미적분학의 기본정리​미적분학의 기본정리 1(Fundamental Theorem of Calculus 1, FTC1) 만약 f가 구간 [a, b]에서 연속한다면,  로 정의된 함수 g는 구간 [a, b]에서 연속이고, 구간 (a, b)에서 미분가능하며, g'(x)=f(x)이다.■ - g(x)는 f(t)의 넓이와 같다.- g는 적..

【미분적분학 2】 Chapter 3. 정적분: 정의와 의미

곡선 함수의 넓이를 구할 때, 직사각형의 넓이를 설정하는 방법으로 총 3가지를 알아보았다. 특히, 표본점의 근사식은 곡선의 길이, 입체의 부피, 질량중심, 압력에 의한 힘(force) 등 다양한 물리량을 구하는 문제에 활용된다. 그러므로 이러한 형태의 극한은 특별한 이름과 기호를 붙일 수 있다.  정적분의 정의 | Definition of Definite Integral​단, 극한이 존재하고 표본점을 어떤 식으로 잡더라도 그 값은 서로 동일하다고 가정한다. 그리고 이 극한이 존재할 때 f는 [a, b] 구간에서 적분가능(integrable)이라 한다.■​ 적분법Integration 정적분에 나온 적분기호 ∫(인테그랄, integral)은 적분법에 쓰이는 대표 기호로 각각의 의미를 알아보자.   적분법으로..

【미분적분학 2】 Chapter 2. 표본점과 리만합

앞선 챕터에서 우리는 오른쪽 근사와 왼쪽 근사를 알아보았다. 그리고 서로 다른 끝점에 의해 아래와 같은 대소 관계를 가짐을 확인했다.​이제는 이 아이디어를 확장하여 일반적인 영역 S에 적용할 수 있는 방법론을 알아보자.  [1] 먼저 어떤 함수 f(x)에 의해 생겨난 S에 대해 동일한 폭을 갖는 n개의 직사각형을 [그림 1]과 같이 나눈다. 단, 여기서는 오른쪽 끝점들(right endpoints)로 설정한 면적에 설명을 한정한다.  [2] 구간 [a, b](지점 a에서 b까지의 구간)의 폭 값은 b-a이고, n개의 직사각형 폭이 모두 Δx일 때, Δx는 아래 값을 만족한다.  구간 [a, b]의 전체 길이(폭)는 (n개의 직사각형) x (Δx)의 값과 같다.​[3] 직사각형은 [a, b]에서 n개의 부..

【미분적분학 2】 Chapter 1. 적분: 넓이 구하기

아르키메데스의 소진법Method of Exhaustion ​현대적인 적분 개의 기원은 고대 그리스 시대의 수학자 아르키메데스(Archimedes of Syracuse, B.C. 287 - B.C. 212)가 곡선을 가진 도형의 면적과 부피를 구함에 있어, 오늘날의 적분과 매우 유사한 방법을 사용한 데서 출발한다.아르키메데스의 소진법: 아르키메데스는 [그림 1]과 같이, 포물선을 가로지르는 특정한 직선에 의해 경계를 갖춘 면적(parabolic segment)의 넓이를 구하는 것을 탐구했는데, 이에 대한 해결책으로 그는 [그림 2]와 같은 포물선에 내접한 삼각형 면적을 반복적으로 만들어 나가는 '소진법(消盡法, method of exhaustion)'을 구상했다.​  [그림 2]와 같이 포물선에 내접한 첫..

728x90
반응형