미분의 여러 가지 내용을 증명하는 데 삼각함수의 극한 값들이 중요하게 활용된다. 사인 함수sinx의 극한 식 1 -|x|≤sinx≤|x|이므로, squeeze theorem을 이용하면, 식 1이 성립함을 확인할 수 있다. sinx/x의 극한식 2 x 값을 극도록 줄일수록 0.999...로 계산된다. sinπ/x의 극한 존재하지 않는다. x^2(sin(1/x))의 극한 부등식의 관계 -1≤sin(1/x)≤1에 x^2을 곱하면, 식 3 식 3을 얻을 수 있다. 식 4 식 4에 근거해, 식 3에 squeeze theorem을 적용하면, x^2(sin(1/x))은 0이라 할 수 있다. 코사인 함수cosx의 극한 모든 x에 대해 0≤1-cosx≤|x|이므로, lim_{a→0}(1-cosx)=0이 성..