728x90
반응형

리만 2

【미분적분학 2】 Chapter 2. 표본점과 리만합

앞선 챕터에서 우리는 오른쪽 근사와 왼쪽 근사를 알아보았다. 그리고 서로 다른 끝점에 의해 아래와 같은 대소 관계를 가짐을 확인했다.​이제는 이 아이디어를 확장하여 일반적인 영역 S에 적용할 수 있는 방법론을 알아보자.  [1] 먼저 어떤 함수 f(x)에 의해 생겨난 S에 대해 동일한 폭을 갖는 n개의 직사각형을 [그림 1]과 같이 나눈다. 단, 여기서는 오른쪽 끝점들(right endpoints)로 설정한 면적에 설명을 한정한다.  [2] 구간 [a, b](지점 a에서 b까지의 구간)의 폭 값은 b-a이고, n개의 직사각형 폭이 모두 Δx일 때, Δx는 아래 값을 만족한다.  구간 [a, b]의 전체 길이(폭)는 (n개의 직사각형) x (Δx)의 값과 같다.​[3] 직사각형은 [a, b]에서 n개의 부..

[적분] 12장. 적분: 정적분

곡선함수의 넓이를 구할 때, 직사각형의 넓이를 설정하는 방법으로 2가지 근사와 함께 표본점을 이용한 극한 값까지 확인했다. 특히 표본점의 근사식은 곡선의 길이, 입체의 부피, 질중심, 압력에 의한 힘(force) 등 다양한 물리량을 구하는 문제 등에 활용된다. 그러므로 이러한 형태의 극한은 특별한 이름과 기호를 붙일 수 있다. 정적분 ■ 만일 f가 a≤x≤b에서 정의된 연속함수라면, 구간 [a, b]를 동일한 폭 Δx=b-a/n인 n개의 부분 구간들로 나눌 수 있다. x_0=a, x_1, x_1, ..., x_n=b까지를 부분구간들의 끝점으로 두고 x_1*, x_2*, ..., x_n*을 임의의 표본점이라 하면, x_i*는 i번째의 부분구간 [x_i-1, x_i]에 놓이게 된다. 그러면 a에서 b까지의 ..

728x90
반응형