728x90
반응형

미분적분학 13

【미분적분학 1】 Chapter 11. 미분법: 다항함수 도함수

​[Chapter 4. 도함수 찾기]에서 배운 미분계수의 개념에서 a(점 P의 x값)는 고정된 수였다. 그러나 지금부터는 이 a를 변할 수 있는 값으로 생각한다. 미분계수의 식에 a를 변수 x로 바꾸면, 도함수가 정의된다.​도함수 | Derivative ■​의미: x에서의 f'(x)의 값은 기하학적으로 점 (x, f'(x))에서 f의 그래프에 접하는 접선의 기울기[그림 1]이다.f'(x)는 f의 도함수(derivative of f)로 정의된다.f'(x)의 정의역은 {x | ∃f'(x)}이며, 이 값은 f의 정의역보다 크지 않다.​   EXAMPLE. 도함수함수 f(x)가 아래와 같이 주어졌을 때, f'(x)를 구하시오.  SOLUTION.(1)  (2)​​(3) ​​   ■​위의 계산식은 그 과정이 너무..

【미분적분학 2】 Chapter 2. 표본점과 리만합

앞선 챕터에서 우리는 오른쪽 근사와 왼쪽 근사를 알아보았다. 그리고 서로 다른 끝점에 의해 아래와 같은 대소 관계를 가짐을 확인했다.​이제는 이 아이디어를 확장하여 일반적인 영역 S에 적용할 수 있는 방법론을 알아보자.  [1] 먼저 어떤 함수 f(x)에 의해 생겨난 S에 대해 동일한 폭을 갖는 n개의 직사각형을 [그림 1]과 같이 나눈다. 단, 여기서는 오른쪽 끝점들(right endpoints)로 설정한 면적에 설명을 한정한다.  [2] 구간 [a, b](지점 a에서 b까지의 구간)의 폭 값은 b-a이고, n개의 직사각형 폭이 모두 Δx일 때, Δx는 아래 값을 만족한다.  구간 [a, b]의 전체 길이(폭)는 (n개의 직사각형) x (Δx)의 값과 같다.​[3] 직사각형은 [a, b]에서 n개의 부..

【미분적분학 2】 Chapter 1. 적분: 넓이 구하기

아르키메데스의 소진법Method of Exhaustion ​현대적인 적분 개의 기원은 고대 그리스 시대의 수학자 아르키메데스(Archimedes of Syracuse, B.C. 287 - B.C. 212)가 곡선을 가진 도형의 면적과 부피를 구함에 있어, 오늘날의 적분과 매우 유사한 방법을 사용한 데서 출발한다.아르키메데스의 소진법: 아르키메데스는 [그림 1]과 같이, 포물선을 가로지르는 특정한 직선에 의해 경계를 갖춘 면적(parabolic segment)의 넓이를 구하는 것을 탐구했는데, 이에 대한 해결책으로 그는 [그림 2]와 같은 포물선에 내접한 삼각형 면적을 반복적으로 만들어 나가는 '소진법(消盡法, method of exhaustion)'을 구상했다.​  [그림 2]와 같이 포물선에 내접한 첫..

728x90
반응형