도함수 찾기 - 극한과 구간축소법 앞선 [02. 순간변화율의 계산 - 극한과 구간축소법]에서 배운 내용들을 시작으로, 어떤 함수의 순간 기울기인 도함수 개념을 이끌어 내보자. 구간축소법: 어떤 함수의 임의의 점에 대한 실질적인 함수의 변화율은 '구간에서의 평균 변화율'에서 x의 구간(Δx)을 더욱 좁혀나감으로써 f(x)의 한 점에서의 변화율 경향성을 예측할 수 있다. 두 구간의 가장 작은 차이를 증분이라 하고 기호로는 δx로 표현한다. 극한: 만약 x가 x축의 a라는 특정 값에 한없이 가까워질 때, 함수값 f(x)는 어떠한 극한 값을 가지게 되고 이를 L 이라는 수로 표현할 수 있는데, 구간축소법의 개념을 적용해 δx가 0에 가깝게 설정될 때, 극한의 기법을 활용하면 함수값 f(x)의 특정 극한 값..